web-dev-qa-db-ja.com

Cでのビット反転の効率的なアルゴリズム(MSB-> LSBからLSB-> MSB)

以下を達成するための最良のアルゴリズムは何ですか:

0010 0000 => 0000 0100

変換は、MSB-> LSBからLSB-> MSBになります。すべてのビットを反転する必要があります。つまり、これはnot endianness-swappingです。

232
green_t

NOTE:以下のすべてのアルゴリズムはCで記述されていますが、選択した言語に移植可能である必要があります(それらが表示されているときは私を見ないでください)それほど速くない:)

オプション

低メモリ(32ビットint、32ビットマシン)(from here ):

unsigned int
reverse(register unsigned int x)
{
    x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
    x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
    x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
    x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
    return((x >> 16) | (x << 16));

}

有名な Bit Twiddling Hacksページ から:

最速(ルックアップテーブル)

static const unsigned char BitReverseTable256[] = 
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};

unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed

// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) | 
    (BitReverseTable256[(v >> 8) & 0xff] << 16) | 
    (BitReverseTable256[(v >> 16) & 0xff] << 8) |
    (BitReverseTable256[(v >> 24) & 0xff]);

// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]]; 
q[2] = BitReverseTable256[p[1]]; 
q[1] = BitReverseTable256[p[2]]; 
q[0] = BitReverseTable256[p[3]];

このアイデアを64ビットのintsに拡張したり、速度とメモリのトレードオフ(L1データキャッシュが十分に大きいと仮定)したり、64Kエントリルックアップテーブルで一度に16ビットを反転したりできます。


その他

シンプル

unsigned int v;     // input bits to be reversed
unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end

for (v >>= 1; v; v >>= 1)
{   
  r <<= 1;
  r |= v & 1;
  s--;
}
r <<= s; // shift when v's highest bits are zero

高速(32ビットプロセッサ)

unsigned char b = x;
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; 

高速(64ビットプロセッサ)

unsigned char b; // reverse this (8-bit) byte
b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;

これを32ビットのintで行いたい場合は、各バイトのビットを逆にし、バイトの順序を逆にします。あれは:

unsigned int toReverse;
unsigned int reversed;
unsigned char inByte0 = (toReverse & 0xFF);
unsigned char inByte1 = (toReverse & 0xFF00) >> 8;
unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;
unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;
reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);

結果

最も有望な2つのソリューション、ルックアップテーブル、およびビット単位のAND(最初のソリューション)のベンチマークを行いました。テストマシンは、4GBのDDR2-800と2.4 GHzのCore 2 Duo T7500、4MB L2キャッシュを備えたラップトップです。 YMMV。 64ビットLinuxではgcc4.3.2を使用しました。 OpenMP(およびGCCバインディング)は、高解像度タイマーに使用されました。

reverse.c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

unsigned int
reverse(register unsigned int x)
{
    x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
    x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
    x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
    x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
    return((x >> 16) | (x << 16));

}

int main()
{
    unsigned int *ints = malloc(100000000*sizeof(unsigned int));
    unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
    for(unsigned int i = 0; i < 100000000; i++)
      ints[i] = Rand();

    unsigned int *inptr = ints;
    unsigned int *outptr = ints2;
    unsigned int *endptr = ints + 100000000;
    // Starting the time measurement
    double start = omp_get_wtime();
    // Computations to be measured
    while(inptr != endptr)
    {
      (*outptr) = reverse(*inptr);
      inptr++;
      outptr++;
    }
    // Measuring the elapsed time
    double end = omp_get_wtime();
    // Time calculation (in seconds)
    printf("Time: %f seconds\n", end-start);

    free(ints);
    free(ints2);

    return 0;
}

reverse_lookup.c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

static const unsigned char BitReverseTable256[] = 
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};

int main()
{
    unsigned int *ints = malloc(100000000*sizeof(unsigned int));
    unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));
    for(unsigned int i = 0; i < 100000000; i++)
      ints[i] = Rand();

    unsigned int *inptr = ints;
    unsigned int *outptr = ints2;
    unsigned int *endptr = ints + 100000000;
    // Starting the time measurement
    double start = omp_get_wtime();
    // Computations to be measured
    while(inptr != endptr)
    {
    unsigned int in = *inptr;  

    // Option 1:
    //*outptr = (BitReverseTable256[in & 0xff] << 24) | 
    //    (BitReverseTable256[(in >> 8) & 0xff] << 16) | 
    //    (BitReverseTable256[(in >> 16) & 0xff] << 8) |
    //    (BitReverseTable256[(in >> 24) & 0xff]);

    // Option 2:
    unsigned char * p = (unsigned char *) &(*inptr);
    unsigned char * q = (unsigned char *) &(*outptr);
    q[3] = BitReverseTable256[p[0]]; 
    q[2] = BitReverseTable256[p[1]]; 
    q[1] = BitReverseTable256[p[2]]; 
    q[0] = BitReverseTable256[p[3]];

      inptr++;
      outptr++;
    }
    // Measuring the elapsed time
    double end = omp_get_wtime();
    // Time calculation (in seconds)
    printf("Time: %f seconds\n", end-start);

    free(ints);
    free(ints2);

    return 0;
}

いくつかの異なる最適化で両方のアプローチを試し、各レベルで3回試行し、各試行で1億個のランダムunsigned intsを逆転させました。ルックアップテーブルオプションについては、ビット単位のハッキングページで指定された両方のスキーム(オプション1および2)を試しました。結果を以下に示します。

ビット単位のAND

[email protected]:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c
[email protected]:~/code$ ./reverse
Time: 2.000593 seconds
[email protected]:~/code$ ./reverse
Time: 1.938893 seconds
[email protected]:~/code$ ./reverse
Time: 1.936365 seconds
[email protected]:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c
[email protected]:~/code$ ./reverse
Time: 0.942709 seconds
[email protected]:~/code$ ./reverse
Time: 0.991104 seconds
[email protected]:~/code$ ./reverse
Time: 0.947203 seconds
[email protected]:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c
[email protected]:~/code$ ./reverse
Time: 0.922639 seconds
[email protected]:~/code$ ./reverse
Time: 0.892372 seconds
[email protected]:~/code$ ./reverse
Time: 0.891688 seconds

ルックアップテーブル(オプション1)

[email protected]:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
[email protected]:~/code$ ./reverse_lookup
Time: 1.201127 seconds              
[email protected]:~/code$ ./reverse_lookup
Time: 1.196129 seconds              
[email protected]:~/code$ ./reverse_lookup
Time: 1.235972 seconds              
[email protected]:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
[email protected]:~/code$ ./reverse_lookup
Time: 0.633042 seconds              
[email protected]:~/code$ ./reverse_lookup
Time: 0.655880 seconds              
[email protected]:~/code$ ./reverse_lookup
Time: 0.633390 seconds              
[email protected]:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
[email protected]:~/code$ ./reverse_lookup
Time: 0.652322 seconds              
[email protected]:~/code$ ./reverse_lookup
Time: 0.631739 seconds              
[email protected]:~/code$ ./reverse_lookup
Time: 0.652431 seconds  

ルックアップテーブル(オプション2)

[email protected]:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c
[email protected]:~/code$ ./reverse_lookup
Time: 1.671537 seconds
[email protected]:~/code$ ./reverse_lookup
Time: 1.688173 seconds
[email protected]:~/code$ ./reverse_lookup
Time: 1.664662 seconds
[email protected]:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c
[email protected]:~/code$ ./reverse_lookup
Time: 1.049851 seconds
[email protected]:~/code$ ./reverse_lookup
Time: 1.048403 seconds
[email protected]:~/code$ ./reverse_lookup
Time: 1.085086 seconds
[email protected]:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c
[email protected]:~/code$ ./reverse_lookup
Time: 1.082223 seconds
[email protected]:~/code$ ./reverse_lookup
Time: 1.053431 seconds
[email protected]:~/code$ ./reverse_lookup
Time: 1.081224 seconds

結論

パフォーマンスが心配な場合は、オプション1(バイトアドレッシングは驚くほど遅い)でルックアップテーブルを使用します。システムのメモリの最後のすべてのバイトを圧縮する必要がある場合(およびビット反転のパフォーマンスに関心がある場合は)、ビット単位ANDアプローチの最適化バージョンも粗末ではありません。

警告

はい、ベンチマークコードが完全なハックであることは知っています。それを改善する方法についての提案は大歓迎です。私が知っていること:

  • ICCにアクセスできません。これはより高速かもしれません(これをテストできる場合はコメントで返信してください)。
  • 64Kルックアップテーブルは、大規模なL1Dを備えた一部の最新のマイクロアーキテクチャでうまく機能する場合があります。
  • -mtune = nativeは-O2/-O3では機能しませんでした(ldはいくつかのクレイジーなシンボル再定義エラーで爆発しました)。そのため、生成されたコードがマイクロアーキテクチャ用に調整されているとは思いません。
  • これをSSEでわずかに高速化する方法があるかもしれません。方法はわかりませんが、高速複製、ビット単位のANDの詰め込み、スウィズル命令があれば、そこに何かがあります。
  • 危険なx86アセンブリだけを知っています。 GCCがオプション1の-O3で生成したコードは次のとおりです。したがって、自分よりも知識のある人がチェックアウトできます。

32ビット

.L3:
movl    (%r12,%rsi), %ecx
movzbl  %cl, %eax
movzbl  BitReverseTable256(%rax), %edx
movl    %ecx, %eax
shrl    $24, %eax
mov     %eax, %eax
movzbl  BitReverseTable256(%rax), %eax
sall    $24, %edx
orl     %eax, %edx
movzbl  %ch, %eax
shrl    $16, %ecx
movzbl  BitReverseTable256(%rax), %eax
movzbl  %cl, %ecx
sall    $16, %eax
orl     %eax, %edx
movzbl  BitReverseTable256(%rcx), %eax
sall    $8, %eax
orl     %eax, %edx
movl    %edx, (%r13,%rsi)
addq    $4, %rsi
cmpq    $400000000, %rsi
jne     .L3

編集:また、マシンでuint64_t型を使用して、パフォーマンスが向上したかどうかを確認しました。パフォーマンスは32ビットよりも約10%高速で、64ビット型を使用して2つの32ビットint型のビットを一度に反転する場合でも、実際に64倍のビットを実際に反転する場合でも、ほぼ同じでした。ビット値。アセンブリコードを以下に示します(前者の場合、2つの32ビットint型のビットを一度に反転します):

.L3:
movq    (%r12,%rsi), %rdx
movq    %rdx, %rax
shrq    $24, %rax
andl    $255, %eax
movzbl  BitReverseTable256(%rax), %ecx
movzbq  %dl,%rax
movzbl  BitReverseTable256(%rax), %eax
salq    $24, %rax
orq     %rax, %rcx
movq    %rdx, %rax
shrq    $56, %rax
movzbl  BitReverseTable256(%rax), %eax
salq    $32, %rax
orq     %rax, %rcx
movzbl  %dh, %eax
shrq    $16, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $16, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $16, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $8, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $8, %rdx
movzbl  BitReverseTable256(%rax), %eax
salq    $56, %rax
orq     %rax, %rcx
movzbq  %dl,%rax
shrq    $8, %rdx
movzbl  BitReverseTable256(%rax), %eax
andl    $255, %edx
salq    $48, %rax
orq     %rax, %rcx
movzbl  BitReverseTable256(%rdx), %eax
salq    $40, %rax
orq     %rax, %rcx
movq    %rcx, (%r13,%rsi)
addq    $8, %rsi
cmpq    $400000000, %rsi
jne     .L3
487
Matt J

このスレッドは、最新のCPUでも多くの作業(CPUサイクル)を必要とする単純な問題を扱っているため、私の注目を集めました。そしてある日、私は同じ¤#% "#"問題でそこに立っていました。私は数百万バイトを反転しなければなりませんでした。ただし、ターゲットシステムはすべて最新のIntelベースであることがわかっているため、極限まで最適化を始めましょう!!!

そこで、Matt Jのルックアップコードをベースとして使用しました。私がベンチマークしているシステムは、i7 haswell 4700eqです。

Matt Jのルックアップビットフリッピング400 000 000バイト:約0.272秒。

次に、IntelのISPCコンパイラーがreverse.cで算術演算をベクトル化できるかどうかを確認しました。

コンパイラーが何かを見つけるのを助けるために多くのことを試みたので、ここでの私の調査結果であなたを退屈させるつもりはありません。これは大幅に削減されますが、私のアプリケーションにとってはまだ遅すぎる方法です。

だから人々は私に世界最速のIntelベースのbitflipperを紹介させてくれた。刻時:

ビットフリップの時間400000000バイト:0.050082秒!!!!!

// Bitflip using AVX2 - The fastest Intel based bitflip in the world!!
// Made by Anders Cedronius 2014 (anders.cedronius (you know what) gmail.com)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>

using namespace std;

#define DISPLAY_HEIGHT  4
#define DISPLAY_WIDTH   32
#define NUM_DATA_BYTES  400000000

// Constants (first we got the mask, then the high order nibble look up table and last we got the low order nibble lookup table)
__attribute__ ((aligned(32))) static unsigned char k1[32*3]={
        0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,
        0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f,0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f,
        0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
};

// The data to be bitflipped (+32 to avoid the quantization out of memory problem)
__attribute__ ((aligned(32))) static unsigned char data[NUM_DATA_BYTES+32]={};

extern "C" {
void bitflipbyte(unsigned char[],unsigned int,unsigned char[]);
}

int main()
{

    for(unsigned int i = 0; i < NUM_DATA_BYTES; i++)
    {
        data[i] = Rand();
    }

    printf ("\r\nData in(start):\r\n");
    for (unsigned int j = 0; j < 4; j++)
    {
        for (unsigned int i = 0; i < DISPLAY_WIDTH; i++)
        {
            printf ("0x%02x,",data[i+(j*DISPLAY_WIDTH)]);
        }
        printf ("\r\n");
    }

    printf ("\r\nNumber of 32-byte chunks to convert: %d\r\n",(unsigned int)ceil(NUM_DATA_BYTES/32.0));

    double start_time = omp_get_wtime();
    bitflipbyte(data,(unsigned int)ceil(NUM_DATA_BYTES/32.0),k1);
    double end_time = omp_get_wtime();

    printf ("\r\nData out:\r\n");
    for (unsigned int j = 0; j < 4; j++)
    {
        for (unsigned int i = 0; i < DISPLAY_WIDTH; i++)
        {
            printf ("0x%02x,",data[i+(j*DISPLAY_WIDTH)]);
        }
        printf ("\r\n");
    }
    printf("\r\n\r\nTime to bitflip %d bytes: %f seconds\r\n\r\n",NUM_DATA_BYTES, end_time-start_time);

    // return with no errors
    return 0;
}

Printfはデバッグ用です。

主力は次のとおりです。

bits 64
global bitflipbyte

bitflipbyte:    
        vmovdqa     ymm2, [rdx]
        add         rdx, 20h
        vmovdqa     ymm3, [rdx]
        add         rdx, 20h
        vmovdqa     ymm4, [rdx]
bitflipp_loop:
        vmovdqa     ymm0, [rdi] 
        vpand       ymm1, ymm2, ymm0 
        vpandn      ymm0, ymm2, ymm0 
        vpsrld      ymm0, ymm0, 4h 
        vpshufb     ymm1, ymm4, ymm1 
        vpshufb     ymm0, ymm3, ymm0         
        vpor        ymm0, ymm0, ymm1
        vmovdqa     [rdi], ymm0
        add     rdi, 20h
        dec     rsi
        jnz     bitflipp_loop
        ret

コードは32バイトを使用し、ニブルをマスクします。上位ニブルは右に4シフトします。次に、vpshufbとymm4/ymm3をルックアップテーブルとして使用します。単一のルックアップテーブルを使用できますが、ニブルを再びOR結合する前に左にシフトする必要があります。

ビットを反転するさらに速い方法があります。しかし、私はシングルスレッドとCPUに縛られているので、これは私が達成できる最速でした。より高速なバージョンを作成できますか?

Intel C/C++ Compiler Intrinsic Equivalentコマンドの使用についてコメントしないでください...

71

これは、再帰を愛する人々のための別のソリューションです。

アイデアはシンプルです。入力を半分に分割し、2つの半分を交換し、単一ビットに達するまで続けます。

Illustrated in the example below.

Ex : If Input is 00101010   ==> Expected output is 01010100

1. Divide the input into 2 halves 
    0010 --- 1010

2. Swap the 2 Halves
    1010     0010

3. Repeat the same for each half.
    10 -- 10 ---  00 -- 10
    10    10      10    00

    1-0 -- 1-0 --- 1-0 -- 0-0
    0 1    0 1     0 1    0 0

Done! Output is 01010100

これを解決する再帰関数を次に示します。 (注:私はunsigned intを使用しているため、sizeof(unsigned int)* 8ビットまでの入力に対して機能します。

再帰関数は2つのパラメーターを取ります-ビットを反転する必要がある値と値のビット数。

int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
    unsigned int reversedNum;;
    unsigned int mask = 0;

    mask = (0x1 << (numBits/2)) - 1;

    if (numBits == 1) return num;
    reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
                   reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
    return reversedNum;
}

int main()
{
    unsigned int reversedNum;
    unsigned int num;

    num = 0x55;
    reversedNum = reverse_bits_recursive(num, 8);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0xabcd;
    reversedNum = reverse_bits_recursive(num, 16);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x123456;
    reversedNum = reverse_bits_recursive(num, 24);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);

    num = 0x11223344;
    reversedNum = reverse_bits_recursive(num,32);
    printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}

これは出力です:

Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488
14
Dennis Mathews

まあ、これは確かにマットJのような答えにはならないでしょうが、うまくいけば、それはまだ役に立つでしょう。

size_t reverse(size_t n, unsigned int bytes)
{
    __asm__("BSWAP %0" : "=r"(n) : "0"(n));
    n >>= ((sizeof(size_t) - bytes) * 8);
    n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
    n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
    n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
    return n;
}

これは、64ビット数のバイト(ビットではなく)をスワップするBSWAPと呼ばれるこの小さな命令があることを除いて、Mattの最良のアルゴリズムとまったく同じ考えです。したがって、b7、b6、b5、b4、b3、b2、b1、b0はb0、b1、b2、b3、b4、b5、b6、b7になります。 32ビットの数値で作業しているため、バイトスワップされた数値を32ビットにシフトする必要があります。これにより、各バイトの8ビットを交換する作業が完了します。もう終わった。

タイミング:私のマシンでは、Mattのアルゴリズムは試行ごとに約0.52秒で実行されました。私の場合、試行ごとに約0.42秒で実行されました。 20%速くても悪くないと思います。

命令BSWAPの可用性について心配している場合 Wikipedia は、1989年に出された80846に命令BSWAPが追加されていることを示しています。Wikipediaでは、この命令は32私のマシンでは明らかにそうではないビットレジスタ、それは64ビットレジスタでのみ非常に機能します。

このメソッドは、任意の整数データ型に対して同様に機能するため、必要なバイト数を渡すことでメソッドを簡単に一般化できます。

    size_t reverse(size_t n, unsigned int bytes)
    {
        __asm__("BSWAP %0" : "=r"(n) : "0"(n));
        n >>= ((sizeof(size_t) - bytes) * 8);
        n = ((n & 0xaaaaaaaaaaaaaaaa) >> 1) | ((n & 0x5555555555555555) << 1);
        n = ((n & 0xcccccccccccccccc) >> 2) | ((n & 0x3333333333333333) << 2);
        n = ((n & 0xf0f0f0f0f0f0f0f0) >> 4) | ((n & 0x0f0f0f0f0f0f0f0f) << 4);
        return n;
    }

次のように呼び出すことができます:

    n = reverse(n, sizeof(char));//only reverse 8 bits
    n = reverse(n, sizeof(short));//reverse 16 bits
    n = reverse(n, sizeof(int));//reverse 32 bits
    n = reverse(n, sizeof(size_t));//reverse 64 bits

コンパイラーは、余分なパラメーターを最適化できるようにし(コンパイラーが関数をインライン化すると仮定)、sizeof(size_t)の場合、右シフトが完全に削除されます。 sizeof(char)が渡された場合、GCCは少なくともBSWAPと右シフトを削除できないことに注意してください。

12
SirGuy

Anders Cedroniusの答え は、AVX2をサポートするx86 CPUを持っている人々に最適なソリューションを提供します。 AVXサポートのないx86プラットフォームまたは非x86プラットフォームの場合、次の実装のいずれかが適切に機能します。

最初のコードは、さまざまなARMプロセッサで役立つshift-plus-logicイディオムの使用を最大化するようにコーディングされた、従来のバイナリパーティショニング方法の変形です。さらに、オンザフライマスク生成を使用します。これは、そうでなければ各32ビットマスク値をロードするために複数の命令を必要とするRISCプロセッサにとって有益です。 x86プラットフォームのコンパイラは、実行時ではなくコンパイル時に定数伝播を使用してすべてのマスクを計算する必要があります。

/* Classic binary partitioning algorithm */
inline uint32_t brev_classic (uint32_t a)
{
    uint32_t m;
    a = (a >> 16) | (a << 16);                            // swap halfwords
    m = 0x00ff00ff; a = ((a >> 8) & m) | ((a << 8) & ~m); // swap bytes
    m = m^(m << 4); a = ((a >> 4) & m) | ((a << 4) & ~m); // swap nibbles
    m = m^(m << 2); a = ((a >> 2) & m) | ((a << 2) & ~m);
    m = m^(m << 1); a = ((a >> 1) & m) | ((a << 1) & ~m);
    return a;
}

「コンピュータープログラミングの技術」の第4A巻では、D。Knuthがビットを反転する巧妙な方法を示しています。これは、驚くべきことに、従来のバイナリ分割アルゴリズムよりも少ない操作で済みます。 TAOCPで見つけることができない32ビットオペランドのアルゴリズムの1つは、Hacker's Delight Webサイトの このドキュメント に示されています。

/* Knuth's algorithm from http://www.hackersdelight.org/revisions.pdf. Retrieved 8/19/2015 */
inline uint32_t brev_knuth (uint32_t a)
{
    uint32_t t;
    a = (a << 15) | (a >> 17);
    t = (a ^ (a >> 10)) & 0x003f801f; 
    a = (t + (t << 10)) ^ a;
    t = (a ^ (a >>  4)) & 0x0e038421; 
    a = (t + (t <<  4)) ^ a;
    t = (a ^ (a >>  2)) & 0x22488842; 
    a = (t + (t <<  2)) ^ a;
    return a;
}

インテル®コンパイラーC/C++コンパイラー13.1.3.198を使用すると、上記の関数は両方ともXMMレジスターを適切に自動ベクトル化します。また、手間をかけずに手動でベクトル化することもできます。

IvyBridge Xeon E3 1270v2では、自動ベクトル化コードを使用して、1億個のuin32_tワードが、brev_classic()を使用して0.070秒、brev_knuth()を使用して0.068秒でビット反転しました。ベンチマークがシステムメモリの帯域幅によって制限されないように注意しました。

11
njuffa

ビットの配列があると仮定して、これについてはどうですか:1. MSBから始めて、ビットを1つずつスタックにプッシュします。 2.このスタックから別の配列(またはスペースを節約する場合は同じ配列)にビットをポップし、最初にポップされたビットをMSBに入れ、そこから下位ビットに進みます。

Stack stack = new Stack();
Bit[] bits = new Bit[] { 0, 0, 1, 0, 0, 0, 0, 0 };

for (int i = 0; i < bits.Length; i++) 
{
    stack.Push(bits[i]);
}

for (int i = 0; i < bits.Length; i++)
{
    bits[i] = stack.pop();
}
8

これは人間には役に立たない!...しかし、マシンには最適です

これは、この質問が最初に尋ねられてから6年後の2015年です。それ以来、コンパイラは私たちのマスターになり、人間としての私たちの仕事は彼らを助けることだけです。それでは、マシンに意図を与える最善の方法は何でしょうか?

ビット反転は非常に一般的であるため、x86が増え続けているISAには、それを一度に実行するための命令が含まれていないのはなぜなのか疑問に思う必要があります。

理由:コンパイラに真の簡潔な意図を与えた場合、ビット反転には〜20 CPUサイクルしか必要ありません。 reverse()を作成して使用する方法を示します。

#include <inttypes.h>
#include <stdio.h>

uint64_t reverse(const uint64_t n,
                 const uint64_t k)
{
        uint64_t r, i;
        for (r = 0, i = 0; i < k; ++i)
                r |= ((n >> i) & 1) << (k - i - 1);
        return r;
}

int main()
{
        const uint64_t size = 64;
        uint64_t sum = 0;
        uint64_t a;
        for (a = 0; a < (uint64_t)1 << 30; ++a)
                sum += reverse(a, size);
        printf("%" PRIu64 "\n", sum);
        return 0;
}

このサンプルプログラムをClangバージョン> = 3.6、-O3、-march = native(Haswellでテスト済み)でコンパイルすると、新しいAVX2命令を使用してアートワーク品質のコードが得られ、ランタイムは11秒 processing〜 10億のreverse()。これは、reverse()あたり約10 nsであり、0.5 GHzのCPUサイクルでは、2 GHzが20のCPUサイクルに相当すると想定しています。

  • 1つの大きな配列に対してRAMに1回アクセスするのにかかる時間に10個のreverse()を収めることができます!
  • L2キャッシュLUTに2回アクセスするのにかかる時間に1つのreverse()を適合させることができます。

警告:このサンプルコードは、数年間はまともなベンチマークとして保持されるはずですが、コンパイラーがmain()を最適化して、実際には何も計算するのではなく、最終結果をprintfするのに十分にスマートになると、やがてその年齢を示し始めます。しかし今のところ、reverse()を紹介するのに役立ちます。

6
user2875414

私はそれがCではなくasmであることを知っています:

var1 dw 0f0f0
clc
     Push ax
     Push cx
     mov cx 16
loop1:
     shl var1
     shr ax
loop loop1
     pop ax
     pop cx

これはキャリービットで機能するため、フラグも保存できます。

5
Coco

もちろん、ビットをいじるハッキングの明白なソースはこちらです: http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious

5
Anders Hansson

ネイティブARM命令「rbit」は、1 cpuサイクルと1 cpu追加レジスタで実行できます。

5
metalogic

まあ、これは基本的に最初の「reverse()」と同じですが、64ビットであり、命令ストリームからロードされる即時マスクが1つだけ必要です。 GCCはジャンプなしでコードを作成するため、これは非常に高速です。

#include <stdio.h>

static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */

val = ZZZZ(val,32,  0x00000000FFFFFFFFull );
val = ZZZZ(val,16,  0x0000FFFF0000FFFFull );
val = ZZZZ(val,8,   0x00FF00FF00FF00FFull );
val = ZZZZ(val,4,   0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2,   0x3333333333333333ull );
val = ZZZZ(val,1,   0x5555555555555555ull );

return val;
#undef ZZZZ
}

int main(void)
{
unsigned long long val, aaaa[16] =
 { 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
 , 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
 , 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
 , 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
 };
unsigned iii;

for (iii=0; iii < 16; iii++) {
    val = swap64 (aaaa[iii]);
    printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
    }
return 0;
}
4
wildplasser

低メモリで最速の実装。

private Byte  BitReverse(Byte bData)
    {
        Byte[] lookup = { 0, 8,  4, 12, 
                          2, 10, 6, 14 , 
                          1, 9,  5, 13,
                          3, 11, 7, 15 };
        Byte ret_val = (Byte)(((lookup[(bData & 0x0F)]) << 4) + lookup[((bData & 0xF0) >> 4)]);
        return ret_val;
    }
4
Aung

標準テンプレートライブラリを使用することもできます。上記のコードよりも遅い場合があります。しかし、私には、より明確で理解しやすいようです。

 #include<bitset>
 #include<iostream>


 template<size_t N>
 const std::bitset<N> reverse(const std::bitset<N>& ordered)
 {
      std::bitset<N> reversed;
      for(size_t i = 0, j = N - 1; i < N; ++i, --j)
           reversed[j] = ordered[i];
      return reversed;
 };


 // test the function
 int main()
 {
      unsigned long num; 
      const size_t N = sizeof(num)*8;

      std::cin >> num;
      std::cout << std::showbase << std::hex;
      std::cout << "ordered  = " << num << std::endl;
      std::cout << "reversed = " << reverse<N>(num).to_ulong()  << std::endl;
      std::cout << "double_reversed = " << reverse<N>(reverse<N>(num)).to_ulong() << std::endl;  
 }
3
Cem

明らかな生の回転がどれくらい速いか興味がありました。私のマシン(i7 @ 2600)では、1,500,150,000回の反復の平均は27.28 nsでした(131,071個の64ビット整数のランダムセット)。

利点:必要なメモリ量が少なく、コードが簡単です。私もそれはそれほど大きくないと思います。必要な時間は予測可能であり、どの入力でも一定です(128の算術SHIFT演算+ 64の論理AND演算+ 64の論理OR演算)。

@Matt Jが得た最高の時間と比較しました-受け入れられた答えを持っています。私が彼の答えを正しく読んだ場合、彼が得たベストは0.631739秒の1,000,000秒であり、これは回転ごとに平均631 nsになります。

私が使用したコードスニペットは以下のとおりです。

unsigned long long reverse_long(unsigned long long x)
{
    return (((x >> 0) & 1) << 63) |
           (((x >> 1) & 1) << 62) |
           (((x >> 2) & 1) << 61) |
           (((x >> 3) & 1) << 60) |
           (((x >> 4) & 1) << 59) |
           (((x >> 5) & 1) << 58) |
           (((x >> 6) & 1) << 57) |
           (((x >> 7) & 1) << 56) |
           (((x >> 8) & 1) << 55) |
           (((x >> 9) & 1) << 54) |
           (((x >> 10) & 1) << 53) |
           (((x >> 11) & 1) << 52) |
           (((x >> 12) & 1) << 51) |
           (((x >> 13) & 1) << 50) |
           (((x >> 14) & 1) << 49) |
           (((x >> 15) & 1) << 48) |
           (((x >> 16) & 1) << 47) |
           (((x >> 17) & 1) << 46) |
           (((x >> 18) & 1) << 45) |
           (((x >> 19) & 1) << 44) |
           (((x >> 20) & 1) << 43) |
           (((x >> 21) & 1) << 42) |
           (((x >> 22) & 1) << 41) |
           (((x >> 23) & 1) << 40) |
           (((x >> 24) & 1) << 39) |
           (((x >> 25) & 1) << 38) |
           (((x >> 26) & 1) << 37) |
           (((x >> 27) & 1) << 36) |
           (((x >> 28) & 1) << 35) |
           (((x >> 29) & 1) << 34) |
           (((x >> 30) & 1) << 33) |
           (((x >> 31) & 1) << 32) |
           (((x >> 32) & 1) << 31) |
           (((x >> 33) & 1) << 30) |
           (((x >> 34) & 1) << 29) |
           (((x >> 35) & 1) << 28) |
           (((x >> 36) & 1) << 27) |
           (((x >> 37) & 1) << 26) |
           (((x >> 38) & 1) << 25) |
           (((x >> 39) & 1) << 24) |
           (((x >> 40) & 1) << 23) |
           (((x >> 41) & 1) << 22) |
           (((x >> 42) & 1) << 21) |
           (((x >> 43) & 1) << 20) |
           (((x >> 44) & 1) << 19) |
           (((x >> 45) & 1) << 18) |
           (((x >> 46) & 1) << 17) |
           (((x >> 47) & 1) << 16) |
           (((x >> 48) & 1) << 15) |
           (((x >> 49) & 1) << 14) |
           (((x >> 50) & 1) << 13) |
           (((x >> 51) & 1) << 12) |
           (((x >> 52) & 1) << 11) |
           (((x >> 53) & 1) << 10) |
           (((x >> 54) & 1) << 9) |
           (((x >> 55) & 1) << 8) |
           (((x >> 56) & 1) << 7) |
           (((x >> 57) & 1) << 6) |
           (((x >> 58) & 1) << 5) |
           (((x >> 59) & 1) << 4) |
           (((x >> 60) & 1) << 3) |
           (((x >> 61) & 1) << 2) |
           (((x >> 62) & 1) << 1) |
           (((x >> 63) & 1) << 0);
}
3
marian adam

汎用

Cコード。例として1バイトの入力データnumを使用します。

    unsigned char num = 0xaa;   // 1010 1010 (aa) -> 0101 0101 (55)
    int s = sizeof(num) * 8;    // get number of bits
    int i, x, y, p;
    int var = 0;                // make var data type to be equal or larger than num

    for (i = 0; i < (s / 2); i++) {
        // extract bit on the left, from MSB
        p = s - i - 1;
        x = num & (1 << p);
        x = x >> p;
        printf("x: %d\n", x);

        // extract bit on the right, from LSB
        y = num & (1 << i);
        y = y >> i;
        printf("y: %d\n", y);

        var = var | (x << i);       // apply x
        var = var | (y << p);       // apply y
    }

    printf("new: 0x%x\n", new);
2
vjangus

以下はどうですか:

    uint reverseMSBToLSB32ui(uint input)
    {
        uint output = 0x00000000;
        uint toANDVar = 0;
        int places = 0;

        for (int i = 1; i < 32; i++)
        {
            places = (32 - i);
            toANDVar = (uint)(1 << places);
            output |= (uint)(input & (toANDVar)) >> places;

        }


        return output;
    }

小さくて簡単(ただし、32ビットのみ)。

1
BlueAutumn

これはビットを反転させる最も簡単な方法の1つだと思いました。このロジックに欠陥がある場合はお知らせください。基本的にこのロジックでは、位置のビットの値をチェックします。値が反転位置で1の場合、ビットを設定します。

void bit_reverse(ui32 *data)
{
  ui32 temp = 0;    
  ui32 i, bit_len;    
  {    
   for(i = 0, bit_len = 31; i <= bit_len; i++)   
   {    
    temp |= (*data & 1 << i)? (1 << bit_len-i) : 0;    
   }    
   *data = temp;    
  }    
  return;    
}    
1
Arun Nagendran

数が少ないときにすばやく終了する別のループベースのソリューション(複数のタイプのC++で)

template<class T>
T reverse_bits(T in) {
    T bit = static_cast<T>(1) << (sizeof(T) * 8 - 1);
    T out;

    for (out = 0; bit && in; bit >>= 1, in >>= 1) {
        if (in & 1) {
            out |= bit;
        }
    }
    return out;
}

またはCでunsigned intの場合

unsigned int reverse_bits(unsigned int in) {
    unsigned int bit = 1u << (sizeof(T) * 8 - 1);
    unsigned int out;

    for (out = 0; bit && in; bit >>= 1, in >>= 1) {
        if (in & 1)
            out |= bit;
    }
    return out;
}
0
Daniel Santos
// Purpose: to reverse bits in an unsigned short integer 
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
     // declare and initialize number of bits in the unsigned short integer
     const char num_bits = sizeof(a) * CHAR_BIT;

     // declare and initialize bitset representation of integer a
     bitset<num_bits> bitset_a(a);          

     // declare and initialize bitset representation of integer b (0000000000000000)
     bitset<num_bits> bitset_b(0);                  

     // declare and initialize bitset representation of mask (0000000000000001)
     bitset<num_bits> mask(1);          

     for ( char i = 0; i < num_bits; ++i )
     {
          bitset_b = (bitset_b << 1) | bitset_a & mask;
          bitset_a >>= 1;
     }

     return (unsigned short) bitset_b.to_ulong();
}

void PrintBits( unsigned short a )
{
     // declare and initialize bitset representation of a
     bitset<sizeof(a) * CHAR_BIT> bitset(a);

     // print out bits
     cout << bitset << endl;
}


// Testing the functionality of the code

int main ()
{
     unsigned short a = 17, b;

     cout << "Original: "; 
     PrintBits(a);

     b = ReverseBits( a );

     cout << "Reversed: ";
     PrintBits(b);
}

// Output:
Original: 0000000000010001
Reversed: 1000100000000000
0
MikhailJacques
unsigned char ReverseBits(unsigned char data)
{
    unsigned char k = 0, rev = 0;

    unsigned char n = data;

    while(n)

    {
        k = n & (~(n - 1));
        n &= (n - 1);
        rev |= (128 / k);
    }
    return rev;
}
0
user3615967

私が知っている最も簡単な方法は次のとおりだと思います。 MSBは入力で、LSBは「反転」出力です。

unsigned char rev(char MSB) {
    unsigned char LSB=0;  // for output
    _FOR(i,0,8) {
        LSB= LSB << 1;
        if(MSB&1) LSB = LSB | 1;
        MSB= MSB >> 1;
    }
    return LSB;
}

//    It works by rotating bytes in opposite directions. 
//    Just repeat for each byte.
0
user7726695

他の多くの投稿が速度を懸念しているようです(つまり、最高=最速)。シンプルさはどうですか?考慮してください:

char ReverseBits(char character) {
    char reversed_character = 0;
    for (int i = 0; i < 8; i++) {
        char ith_bit = (c >> i) & 1;
        reversed_character |= (ith_bit << (sizeof(char) - 1 - i));
    }
    return reversed_character;
}

そして、賢いコンパイラがあなたのために最適化することを願っています。

ビットの長いリスト(sizeof(char) * nビットを含む)を逆にしたい場合は、この関数を使用して以下を取得できます。

void ReverseNumber(char* number, int bit_count_in_number) {
    int bytes_occupied = bit_count_in_number / sizeof(char);      

    // first reverse bytes
    for (int i = 0; i <= (bytes_occupied / 2); i++) {
        swap(long_number[i], long_number[n - i]);
    }

    // then reverse bits of each individual byte
    for (int i = 0; i < bytes_occupied; i++) {
         long_number[i] = ReverseBits(long_number[i]);
    }
}

これは、[10000000、10101010]を[01010101、00000001]に逆変換します。

0
mercury0114