web-dev-qa-db-ja.com

SHA 256疑似コード?

私はSHA-256がどのように機能するかを考え出そうとしてきました。私が他のアルゴリズムに対して行っていることの1つは、アルゴリズムの一種のステップバイステップの疑似コード関数を作成したことです。

SHA256についても同じことを試みましたが、これまでのところかなりの問題を抱えています。

私はウィキペディアの図がどのように機能するかを考え出そうとしましたが、機能を説明するテキスト部分以外に、私はそれが正しいかどうか確信がありません。

ここに私がこれまで持っているものがあります:

Input is an array 8 items long where each item is 32 bits.
Output is an array 8 items long where each item is 32 bits.
Calculate all the function boxes and store those values. 
|I'll refer to them by function name
Store input, right shifted by 32 bits, into output. 
| At this point, in the out array, E is the wrong value and A is empty
Store the function boxes.
| now we need to calculate out E and out A.
| note: I've replaced the modulo commands with a bitwise AND 2^(32-1) 
| I can't figure out how the modulus adding lines up, but I think it is like this
Store (Input H + Ch + ( (Wt+Kt) AND 2^31 ) ) AND 2^31 As mod1
Store (sum1 + mod1) AND 2^31 as mod2
Store (d + mod2) AND 2^31 into output E 
|now output E is correct and all we need is output A
Store (MA + mod2) AND 2^31 as mod3
Store (sum0 + mod3) AND 2^31 into output A
|output now contains the correct hash of input.
|Do we return now or does this need to be run repeatedly?

これらの加算モジュロはすべて正しくできましたか?また、WtとKtとは何ですか?また、これは1回実行されるだけで、完了するか、出力を入力として再利用して、特定の回数実行する必要があります。

ちなみにここにリンクがあります。 http://en.wikipedia.org/wiki/SHA-2#Hash_function

おかげで、ブライアン

18
codelion

アルゴリズムを説明する公式の標準を見てください。変数は次のとおりです: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

(ああ、今私は私の答えでほぼ1年遅れていると思います、ああ、気にしないでください...)

10
lathspell

W_tは処理中の現在のブロックから導出されますが、K_tは反復数によって決定される固定定数です。圧縮機能は、SHA256のブロックごとに64回繰り返されます。反復ごとに特定の定数K_tと派生値W_tがあります0 <= t <= 63。

Python 3.6を使用して、SHA256の独自の実装を提供しました。タプルKには、K_tの64個の定数値が含まれています。Sha256関数は、リストでW_tの値がどのように計算されるかを示します[〜#〜] w [〜#〜]。実装はコードの明確性に焦点を合わせています高性能ではありません。

W = 32          #Number of bits in Word
M = 1 << W
FF = M - 1      #0xFFFFFFFF (for performing addition mod 2**32)

#Constants from SHA256 definition
K = (0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
     0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
     0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
     0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
     0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
     0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
     0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
     0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
     0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
     0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
     0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
     0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
     0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
     0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
     0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
     0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2)

#Initial values for compression function
I = (0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
     0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19)

def RR(x, b):
    '''
    32-bit bitwise rotate right
    '''
    return ((x >> b) | (x << (W - b))) & FF

def Pad(W):
    '''
    Pads a message and converts to byte array
    '''
    mdi = len(W) % 64           
    L = (len(W) << 3).to_bytes(8, 'big')        #Binary of len(W) in bits
    npad = 55 - mdi if mdi < 56 else 119 - mdi  #Pad so 64 | len; add 1 block if needed
    return bytes(W, 'ascii') + b'\x80' + (b'\x00' * npad) + L   #64 | 1 + npad + 8 + len(W)

def Sha256CF(Wt, Kt, A, B, C, D, E, F, G, H):
    '''
    SHA256 Compression Function
    '''
    Ch = (E & F) ^ (~E & G)
    Ma = (A & B) ^ (A & C) ^ (B & C)        #Major
    S0 = RR(A, 2) ^ RR(A, 13) ^ RR(A, 22)   #Sigma_0
    S1 = RR(E, 6) ^ RR(E, 11) ^ RR(E, 25)   #Sigma_1
    T1 = H + S1 + Ch + Wt + Kt
    return (T1 + S0 + Ma) & FF, A, B, C, (D + T1) & FF, E, F, G

def Sha256(M):
    '''
    Performs SHA256 on an input string 
    M: The string to process
    return: A 32 byte array of the binary digest
    '''
    M = Pad(M)          #Pad message so that length is divisible by 64
    DG = list(I)        #Digest as 8 32-bit words (A-H)
    for j in range(0, len(M), 64):  #Iterate over message in chunks of 64
        S = M[j:j + 64]             #Current chunk
        W = [0] * 64
        W[0:16] = [int.from_bytes(S[i:i + 4], 'big') for i in range(0, 64, 4)]  
        for i in range(16, 64):
            s0 = RR(W[i - 15], 7) ^ RR(W[i - 15], 18) ^ (W[i - 15] >> 3)
            s1 = RR(W[i - 2], 17) ^ RR(W[i - 2], 19) ^ (W[i - 2] >> 10)
            W[i] = (W[i - 16] + s0 + W[i-7] + s1) & FF
        A, B, C, D, E, F, G, H = DG #State of the compression function
        for i in range(64):
            A, B, C, D, E, F, G, H = Sha256CF(W[i], K[i], A, B, C, D, E, F, G, H)
        DG = [(X + Y) & FF for X, Y in Zip(DG, (A, B, C, D, E, F, G, H))]
    return b''.join(Di.to_bytes(4, 'big') for Di in DG)  #Convert to byte array

if __name__ == "__main__":
    bd = Sha256('Hello World')
    print(''.join('{:02x}'.format(i) for i in bd))
6
nickandross
initial_hash_values=[
'6a09e667','bb67ae85','3c6ef372','a54ff53a',
'510e527f','9b05688c','1f83d9ab','5be0cd19'
]

sha_256_constants=[
'428a2f98','71374491','b5c0fbcf','e9b5dba5',
'3956c25b','59f111f1','923f82a4','ab1c5ed5',
'd807aa98','12835b01','243185be','550c7dc3',
'72be5d74','80deb1fe','9bdc06a7','c19bf174',
'e49b69c1','efbe4786','0fc19dc6','240ca1cc',
'2de92c6f','4a7484aa','5cb0a9dc','76f988da',
'983e5152','a831c66d','b00327c8','bf597fc7',
'c6e00bf3','d5a79147','06ca6351','14292967',
'27b70a85','2e1b2138','4d2c6dfc','53380d13',
'650a7354','766a0abb','81c2c92e','92722c85',
'a2bfe8a1','a81a664b','c24b8b70','c76c51a3',
'd192e819','d6990624','f40e3585','106aa070',
'19a4c116','1e376c08','2748774c','34b0bcb5',
'391c0cb3','4ed8aa4a','5b9cca4f','682e6ff3',
'748f82ee','78a5636f','84c87814','8cc70208',
'90befffa','a4506ceb','bef9a3f7','c67178f2'
]

def bin_return(dec):
    return(str(format(dec,'b')))

def bin_8bit(dec):
    return(str(format(dec,'08b')))

def bin_32bit(dec):
    return(str(format(dec,'032b')))

def bin_64bit(dec):
    return(str(format(dec,'064b')))

def hex_return(dec):
    return(str(format(dec,'x')))

def dec_return_bin(bin_string):
    return(int(bin_string,2))

def dec_return_hex(hex_string):
    return(int(hex_string,16))

def L_P(SET,n):
    to_return=[]
    j=0
    k=n
    while k<len(SET)+1:
        to_return.append(SET[j:k])
        j=k
        k+=n 
    return(to_return)

def s_l(bit_string):
    bit_list=[]
    for i in range(len(bit_string)):
        bit_list.append(bit_string[i])
    return(bit_list)

def l_s(bit_list):
    bit_string=''
    for i in range(len(bit_list)):
        bit_string+=bit_list[i]
    return(bit_string)

def rotate_right(bit_string,n):
    bit_list = s_l(bit_string)
    count=0
    while count <= n-1:
        list_main=list(bit_list)
        var_0=list_main.pop(-1)
        list_main=list([var_0]+list_main)
        bit_list=list(list_main)
        count+=1
    return(l_s(list_main))

def shift_right(bit_string,n):
    bit_list=s_l(bit_string)
    count=0
    while count <= n-1:
        bit_list.pop(-1)
        count+=1
    front_append=['0']*n
    return(l_s(front_append+bit_list))

def mod_32_addition(input_set):
    value=0
    for i in range(len(input_set)):
        value+=input_set[i]
    mod_32 = 4294967296
    return(value%mod_32)

def xor_2str(bit_string_1,bit_string_2):
    xor_list=[]
    for i in range(len(bit_string_1)):
        if bit_string_1[i]=='0' and bit_string_2[i]=='0':
            xor_list.append('0')
        if bit_string_1[i]=='1' and bit_string_2[i]=='1':
            xor_list.append('0')
        if bit_string_1[i]=='0' and bit_string_2[i]=='1':
            xor_list.append('1')
        if bit_string_1[i]=='1' and bit_string_2[i]=='0':
            xor_list.append('1')
    return(l_s(xor_list))

def and_2str(bit_string_1,bit_string_2):
    and_list=[]
    for i in range(len(bit_string_1)):
        if bit_string_1[i]=='1' and bit_string_2[i]=='1':
            and_list.append('1')
        else:
            and_list.append('0')

    return(l_s(and_list))

def or_2str(bit_string_1,bit_string_2):
    or_list=[]
    for i in range(len(bit_string_1)):
        if bit_string_1[i]=='0' and bit_string_2[i]=='0':
            or_list.append('0')
        else:
            or_list.append('1')
    return(l_s(or_list))

def not_str(bit_string):
    not_list=[]
    for i in range(len(bit_string)):
        if bit_string[i]=='0':
            not_list.append('1')
        else:
            not_list.append('0')
    return(l_s(not_list))

'''
SHA-256 Specific Functions:
'''

def Ch(x,y,z):
    return(xor_2str(and_2str(x,y),and_2str(not_str(x),z)))

def Maj(x,y,z):
    return(xor_2str(xor_2str(and_2str(x,y),and_2str(x,z)),and_2str(y,z)))

def e_0(x):
    return(xor_2str(xor_2str(rotate_right(x,2),rotate_right(x,13)),rotate_right(x,22)))

def e_1(x):
    return(xor_2str(xor_2str(rotate_right(x,6),rotate_right(x,11)),rotate_right(x,25)))

def s_0(x):
    return(xor_2str(xor_2str(rotate_right(x,7),rotate_right(x,18)),shift_right(x,3)))

def s_1(x):
    return(xor_2str(xor_2str(rotate_right(x,17),rotate_right(x,19)),shift_right(x,10)))

def message_pad(bit_list):
    pad_one = bit_list + '1'
    pad_len = len(pad_one)
    k=0
    while ((pad_len+k)-448)%512 != 0:
        k+=1
    back_append_0 = '0'*k
    back_append_1 = bin_64bit(len(bit_list))
    return(pad_one+back_append_0+back_append_1)

def message_bit_return(string_input):
    bit_list=[]
    for i in range(len(string_input)):
        bit_list.append(bin_8bit(ord(string_input[i])))
    return(l_s(bit_list))

def message_pre_pro(input_string):
    bit_main = message_bit_return(input_string)
    return(message_pad(bit_main))

def message_parsing(input_string):
    return(L_P(message_pre_pro(input_string),32))

def message_schedule(index,w_t):
    new_Word = bin_32bit(mod_32_addition([int(s_1(w_t[index-2]),2),int(w_t[index-7],2),int(s_0(w_t[index-15]),2),int(w_t[index-16],2)]))
    return(new_Word)

'''
This example of SHA_256 works for an input string >56 characters.
'''

def sha_256(input_string):
    w_t=message_parsing(input_string)
    a=bin_32bit(dec_return_hex(initial_hash_values[0]))
    b=bin_32bit(dec_return_hex(initial_hash_values[1]))
    c=bin_32bit(dec_return_hex(initial_hash_values[2]))
    d=bin_32bit(dec_return_hex(initial_hash_values[3]))
    e=bin_32bit(dec_return_hex(initial_hash_values[4]))
    f=bin_32bit(dec_return_hex(initial_hash_values[5]))
    g=bin_32bit(dec_return_hex(initial_hash_values[6]))
    h=bin_32bit(dec_return_hex(initial_hash_values[7]))
    for i in range(0,64):
        if i <= 15: 
            t_1=mod_32_addition([int(h,2),int(e_1(e),2),int(Ch(e,f,g),2),int(sha_256_constants[i],16),int(w_t[i],2)])
            t_2=mod_32_addition([int(e_0(a),2),int(Maj(a,b,c),2)])
            h=g
            g=f
            f=e
            e=mod_32_addition([int(d,2),t_1])
            d=c
            c=b
            b=a 
            a=mod_32_addition([t_1,t_2])
            a=bin_32bit(a)
            e=bin_32bit(e)
        if i > 15:
            w_t.append(message_schedule(i,w_t))
            t_1=mod_32_addition([int(h,2),int(e_1(e),2),int(Ch(e,f,g),2),int(sha_256_constants[i],16),int(w_t[i],2)])
            t_2=mod_32_addition([int(e_0(a),2),int(Maj(a,b,c),2)])
            h=g
            g=f
            f=e
            e=mod_32_addition([int(d,2),t_1])
            d=c
            c=b
            b=a 
            a=mod_32_addition([t_1,t_2])
            a=bin_32bit(a)
            e=bin_32bit(e)
    hash_0 = mod_32_addition([dec_return_hex(initial_hash_values[0]),int(a,2)])
    hash_1 = mod_32_addition([dec_return_hex(initial_hash_values[1]),int(b,2)])
    hash_2 = mod_32_addition([dec_return_hex(initial_hash_values[2]),int(c,2)])
    hash_3 = mod_32_addition([dec_return_hex(initial_hash_values[3]),int(d,2)])
    hash_4 = mod_32_addition([dec_return_hex(initial_hash_values[4]),int(e,2)])
    hash_5 = mod_32_addition([dec_return_hex(initial_hash_values[5]),int(f,2)])
    hash_6 = mod_32_addition([dec_return_hex(initial_hash_values[6]),int(g,2)])
    hash_7 = mod_32_addition([dec_return_hex(initial_hash_values[7]),int(h,2)])
    final_hash = (hex_return(hash_0),
                  hex_return(hash_1),
                  hex_return(hash_2),
                  hex_return(hash_3),
                  hex_return(hash_4),
                  hex_return(hash_5),
                  hex_return(hash_6),
                  hex_return(hash_7))
    return(final_hash)
0
Q-Club