web-dev-qa-db-ja.com

バイナリツリーの反転(左から右)

私はインタビューの質問を見ていましたが、最近、右から左に反転するなど、一般的なバイナリツリーを逆にする方法を尋ねる質問に出会いました。

たとえば、バイナリツリーがある場合

     6
   /   \
  3     4
 / \   / \
7   3 8   1

逆にすると作成されます

     6
   /   \
  4     3
 / \   / \
1   8 3   7

この問題を解決する方法について、良い実装を考えることができませんでした。誰でも良いアイデアを提供できますか?

ありがとう

36
user1234831

再帰を使用できます:

static void reverseTree(final TreeNode root) {
    final TreeNode temp = root.right;
    root.right = root.left;
    root.left = temp;

    if (root.left != null) {
        reverseTree(root.left);
    }

    if (root.right != null) {
        reverseTree(root.right);
    }
}

コメントに基づいて:

static void reverseTree(final TreeNode root) {
    if (root == null) {
        return;
    }

    final TreeNode temp = root.right;
    root.right = root.left;
    root.left = temp;

    reverseTree(root.left);

    reverseTree(root.right);
}
88
Petar Ivanov

O(1)のバイナリツリーを反転します。

    struct NormalNode {
      int value;
      struct NormalNode *left;
      struct NormalNode *right;
    };

    struct ReversedNode {
      int value;
      struct ReversedNode *right;
      struct ReversedNode *left;
    };

    struct ReversedNode *reverseTree(struct NormalNode *root) {
      return (struct ReversedNode *)root;
    }
14
Zhipeng YANG

この質問には興味深い部分がいくつかあります。まず、あなたの言語はJavaであるため、一般的なNodeclass)を持つ可能性が最も高い:

class Node<T> {
    private final T data;
    private final Node left;
    private final Node right;
    public Node<T>(final T data, final Node left, final Node right) {
        this.data  = data;
        this.left  = left;
        this.right = right;
    }
    ....
}

第二に、ノードの左と右のフィールドを変更するか、newノードを作成することにより、反転と呼ばれることもあります。オリジナルですが、その左右の子は「反転」しています。前者のアプローチは 別の回答 に示されていますが、2番目のアプローチはここに示されています:

class Node<T> {
    // See fields and constructor above...

    public Node<T> reverse() {
        Node<T> newLeftSubtree = right == null ? null : right.reverse();
        Node<T> newRightSubtree = left == null ? null : left.reverse();
        return Node<T>(data, newLeftSubtree, newRightSubtree); 
    }
}

データ構造を変更しないという考え方は、 永続的なデータ構造 の背後にある考え方の1つであり、非常に興味深いものです。

5
Ray Toal

私は、ほとんどの答えがヌルポインターの問題に焦点を合わせていないことを見てきました。

public static Node invertBinaryTree(Node node) {

    if(node != null) {
        Node temp = node.getLeftChild();

        node.setLeftChild(node.getRightChild());
        node.setRigthChild(temp);

        if(node.left!=null) { 
            invertBinaryTree(node.getLeftChild());
        }
        if(node.right !=null) {
            invertBinaryTree(node.getRightChild());
        }
    }

    return node;
}

上記のコードでは、ルートノードの左/右の子がnullでない場合にのみ再帰呼び出しを行っています。最速のアプローチの1つです!

0

以下のように、左ノードと右ノードを再帰的に交換できます。

// helper method
private static void reverseTree(TreeNode<Integer> root) {
    reverseTreeNode(root);
}

private static void reverseTreeNode(TreeNode<Integer> node) {
    TreeNode<Integer> temp = node.left;
    node.left   = node.right;
    node.right  = temp;

    if(node.left != null)
        reverseTreeNode(node.left);

    if(node.right != null)
        reverseTreeNode(node.right);
}

Javaのデモコード

import Java.util.LinkedList;
import Java.util.Queue;

public class InvertBinaryTreeDemo {

    public static void main(String[] args) {

        // root node
        TreeNode<Integer> root  = new TreeNode<>(6);

        // children of root
        root.left               = new TreeNode<Integer>(3);
        root.right              = new TreeNode<Integer>(4);

        // grand left children of root
        root.left.left          = new TreeNode<Integer>(7);
        root.left.right         = new TreeNode<Integer>(3);

        // grand right childrend of root
        root.right.left         = new TreeNode<Integer>(8);
        root.right.right        = new TreeNode<Integer>(1);

        System.out.println("Before invert");
        traverseTree(root);

        reverseTree(root);

        System.out.println("\nAfter invert");
        traverseTree(root);
    }

    // helper method
    private static void reverseTree(TreeNode<Integer> root) {
        reverseTreeNode(root);
    }

    private static void reverseTreeNode(TreeNode<Integer> node) {
        TreeNode<Integer> temp = node.left;
        node.left   = node.right;
        node.right  = temp;

        if(node.left != null)
            reverseTreeNode(node.left);

        if(node.right != null)
            reverseTreeNode(node.right);
    }

    // helper method for traverse
    private static void traverseTree(TreeNode<Integer> root) {
        Queue<Integer> leftChildren     = new LinkedList<>();
        Queue<Integer> rightChildren    = new LinkedList<>();

        traverseTreeNode(root, leftChildren, rightChildren);

        System.out.println("Tree;\n*****");

        System.out.printf("%3d\n", root.value);

        int count = 0;
        int div = 0;
        while(!(leftChildren.isEmpty() && rightChildren.isEmpty())) {
            System.out.printf("%3d\t%3d\t", leftChildren.poll(), rightChildren.poll());
            count += 2;
            div++;
            if( (double)count == (Math.pow(2, div))) {
                System.out.println();
                count = 0;
            }
        }

        System.out.println();
    }

    private static void traverseTreeNode(TreeNode<Integer> node, Queue<Integer> leftChildren, Queue<Integer> rightChildren) {
        if(node.left != null)
            leftChildren.offer(node.left.value);

        if(node.right != null)
            rightChildren.offer(node.right.value);

        if(node.left != null) {
            traverseTreeNode(node.left, leftChildren, rightChildren);
        }

        if(node.right != null) {
            traverseTreeNode(node.right, leftChildren, rightChildren);
        }
    }

    private static class TreeNode<E extends Comparable<E>> {

        protected E value;
        protected TreeNode<E> left;
        protected TreeNode<E> right;

        public TreeNode(E value) {
            this.value = value;
            this.left = null;
            this.right = null;
        }

    }

}

出力

Before invert
Tree;
*****
  6
  3   4 
  7   3   8   1 

After invert
Tree;
*****
  6
  4   3 
  1   8   3   7 
0